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ABSTRACT  
In design process of a complex engineered system, studying 

the behavior of the system prior to manufacturing plays a key 

role to reduce cost of design and enhance the efficiency of the 

system during its lifecycle. To study the behavior of the system 

in the early design phase, it is required to model the 

characterization of the system and simulate the system’s 

behavior. The challenge is the fact that in early design stage, 

there is no or little information from the real system’s behavior, 

therefore there is not enough data to use to validate the model 

simulation and make sure that the model is representing the real 

system’s behavior appropriately. In this paper, we address this 

issue and propose methods to validate the model developed in 

the early design stage. First we propose a method based on 

FMEA and show how to quantify expert’s knowledge and 

validate the model simulation in the early design stage. Then, we 

propose a non-parametric technique to test if the observed 

behavior of one or more subsystems which currently exist, and 

the model simulation are the same. In addition, a local sensitivity 

analysis search tool is developed that helps the designers to focus 

on sensitive parts of the system in further design stages, 

particularly when mapping the conceptual model to a component 

model.  We apply the proposed methods to validate the output of 

failure simulation developed in the early stage of designing a 

monopropellant propulsion system design. 

Keywords: Model Validation, early design phase, failure 

simulation, final behavior 

INTRODUCTION 
The question is how do we make sure that the behavior 

simulated by the model selected in the early design phase is 

correct? The approach used in this paper to answer this question 

is model validation. In discussing model validation, we will also 

discuss the related concepts of model selection and model 

calibration. The reason for this is to understand the statistical 

methods associated with these related concepts to determine if 

they have applicability in the early design phase. 



2                                                            Copyright © 2018 by ASME 

Model validation studies the validity of the model to 

represent the real system’s behavior (Sargent, 1987). There are 

many approaches to validate a computer model or mathematical 

model; however, there is not an applicable method to show how 

a designer can validate a model developed in the early design 

stage when the real system or prototype is not available. It is 

difficult to validate a model in early design since very little is 

known at this time. Validation at this phase must consider not 

only traditional model validation, but also suggestions for further 

design steps.  

The objective of this paper is to propose methods to validate 

the simulation generated by a model developed in the early 

design stage, when the complete system or prototype is not 

available, particularly to ensure that it the model is a good 

representation of the real system. 

Following section investigates existing methods and 

discusses the limitations of each method and the reasons they are 

not applicable to validate the result of a selected model in the 

early design stage.  

MODEL VALIDATION METHODS  

In this part, we investigate strategies to validate models 

based on the available data. By looking at the literature in model 

validation, we gain insights into approaches that can be applied 

or adapted for our problem. Models are tools to represent and 

study a real system. Popular models to represent a system are 

mathematical, statistical, computer, component, functional or 

network models. Model validation is a necessary step to make 

sure that the model simulation reflects the real behavior of the 

system. Later in this paper, we discuss the limitations of model 

validation in the early design. It is shown that existing validation 

methods are based upon strong assumptions, and therefore they 

are not always applicable to validate simulation in the early 

design stage, when little or inadequate information is available 

from the real system’s behavior. Different approaches to 

assessing model validity are described. 

A complex engineered system is built for a specific set of 

purposes or objectives, such as improving the sustainability, 

safety, reliability, performance etc., while managing the cost of 

the system; this is a challenge that engineers face from the 

beginning of the design process. The first step in designing such 

systems is to develop a model and simulate the behavior and 

characteristics of the system to enable the designers to study the 

system, and decide upon strategies to improve the design 

features regarding the objectives. Model validation is a necessary 

step to ensure that information obtained from the model is within 

an acceptable range of accuracy consistent with reality (Sanders, 

1996; Lewis, 1992; Law, 2008; Cook and Skinner, 2005). There 

are many approaches that have been used to validate a model. 

We classify the approaches into three groups based on the 

amount of available true data to validate a model. For the aim of 

this paper, when there are enough data available to assume a 

probability distribution, the classification is called adequate 

data.  When there are some true data available to validate the 

model, but not enough to assigning a probability distribution, it 

is called little data. When there is no data and the only available 

source to validate a model is expert knowledge, it is a no data 

situation. Table 1. represents the classification of the model 

validation methods based on the available data. In the first class, 

enough true data is available to validate the model under study. 

For this class, standard statistical methods can be used to test if 

the model under review produces the result similar to the true 

data by comparing the true data and output generated by the 

model. True data can be obtained from another valid model, 

historical data, prototype, or a real system.  In the second class, 

there is not enough true data available to validate the whole 

model; however, observations from some subsystems are 

available. In this class, a prototype or real system is not 

manufactured or historical data of the complete system behavior 

is not available; however, observations from some subsystems 

can be applied to validate parts of the model. If the observations 

and model output are discrete values, the chi-squared test is the 

tool to test the validity; otherwise, for continuous values, the K-

S test is the appropriate tool to test the similarity of the observed 

data from subsystems and output from the model. In the third 

class, there is no data available to validate the model. In this case, 

the only source to validate the model is expert knowledge. 

Methods like Failure Modes and Effect Analysis (FMEA) or 

evidence theory are applied to quantify the expert knowledge and 

validate the model. In regard to the objective of this paper to 

validate the output from the model developed in early design 

stage, class 2 or 3 in Tab. 1. is typically the case, because in the 

early design stage no or little data from the complete system is 

available. 

Table 1. Model validation methods and assumptions 

Class  Available 

Data 

Source  Tools to Test 

Validity  

1 Adequate 

Data  

Historical Data,  

Another Valid 

Model,  

Real 

system/Prototype 

Standard 

statistical 

Methods, 
Sensitivity 

Analysis 

2 Little 

Data  

Subsystems Chi-Squared 

for Discrete 

Samples 

K-S Test for 

Continuous 

Samples 

3 No Data Experts 

knowledge  

FMEA, 

 Evidence 

Theory  

 

The following sections provide more details on each class. 
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Adequate True Data to Validate Model  
Adequate true data can be utilized to select, calibrate and 

validate a model with familiar statistical methods. True data 

might be obtained from a real system or prototype observations, 

or a valid model. Having enough true data is desired to develop, 

select, test or validate a model, however most of the time in 

complex engineered system design, this is not the case. In the 

next subsections, we will discuss techniques for model selection 

and model calibration, in addition to model validation, to 

understand how adequate data can be used in the modeling 

process.  

Model Selection  

If enough data is available from the real system’s behavior, 

cross-validation method can be applied to select the model with 

closest behavior to the real system.  

Cross-validation is a technique to select the model that has 

lowest Mean Square Error (MSE) with respect to the true data. 

It is applicable when there are different models and the goal is to 

select the one that generates output similar to the true data 

(Smyth, 2000; Kohavi, 1995; Stone, 1977). 

Another application of the cross-validation method is to 

build a model when enough true data is available. This has been 

widely used to build predictive models e.g., sales predictions 

models. In this application, the dataset is divided to two parts, 

one part is used to build a predictive model and another part is 

utilized to test the model. Survey paper by Arlot and Celisse (2010) 

provides more details about cross-validation method.  

A method to select a model among two candidate models, 

when true data is available is Likelihood Ratio (LR) test. It is 

assumed that a proper statistical distribution can be assigned to 

data generated by each one of the candidate models and there are 

no unknown parameters to estimate. According to Vuong (1989), 

the hypothesis for the likelihood ratio test specifies if there is a 

meaningful difference between the parameter obtained from the 

first model and the parameter from the second model: 

𝐻0 ∶  𝜃1 = 𝜃2 

𝐻𝐴: 𝜃1 ≠ 𝜃2 

where 𝜃1 is the parameter of the first model and 𝜃2 is the 

parameter of the second model. Equation (1) demonstrates the 

likelihood ratio test: 

𝐿𝑅 =  
𝐿(𝜃2|𝑑)

𝐿(𝜃1|𝑑)
                                   (1) 

The true dataset, 𝑑, (obtained from valid model or observation 

or real system) provides the maximum likelihood estimate of the 

parameter. The ratio selects the model that is more likely to 

produce true dataset 𝑑. In other words, the selected model has 

the parameter with smaller difference from maximum likelihood 

estimator (Banerjee, et al., 2008) 

Bayes Factor is a popular method to decide between two 

models when there is true data, 𝑑. This method has been used in 

a wide range of fields (Wasserman, 2000; Raftery, 1995; Berger 

and Pericchi, 1996). It is assumed that a proper statistical 

distribution can be assigned to data generated by each one of the 

candidate models. Consider 𝑀1and 𝑀2 are two candidate models 

and we are interested in selecting the one that is more likely to 

produce given true data d. Minhas et al. (2014) present the Bayes 

factor 𝐵12 illustrated in Eq. (2) to decide between model 𝑀1and 

𝑀2: 

𝐵12 =
𝑃(𝑀1|𝑑)/𝑃(𝑀2|𝑑)

𝑃(𝑀1)/𝑃(𝑀2)
                            (2) 

Where 𝑃(𝑀𝑖) is the prior probability distribution of model 𝑀𝑖  

and 𝑃(𝑀𝑖|𝑑) is the posterior probability distribution of the 

model 𝑀𝑖  generates the data. When the Bayes factor is larger 

than 1, model 𝑀1is selected, and when the Bayes factor is less 

than 1, model 𝑀2is selected. Bayes factor equal to 1 does not 

provide any evidence to select one model over the other. 

Model Calibration  

True data can be used to calibrate the model. Calibration is 

widely used in computer-based models. In the calibration 

technique, some particular model parameters are considered 

fixed and unknown and using the true data, the best match of the 

parameters is found. In addition, a bias factor is typically added 

to the model to account for lack of fit of the model to the data 

(i.e., modeling error). 

The limitation of the calibration technique is that in practice 

model parameters are not fixed and they change in each run of 

simulations. Xiong et al. (2009), address the limitation of using 

true data to calibrate a model assuming the parameters are fixed. 

They proposed a Maximum Likelihood Estimation (MLE) 

method to assign a distribution to random changing parameters 

of the model and to calibrate those parameters utilizing true data. 

Model Validation  

When there is a model developed to represent the real 

system’s behavior and we are interested in validating the model 

using true data, many standard statistical tests can be applied. In 

this case, the validation phase focuses on comparing the true 

data, with the corresponding elements of the model simulation to 

determine whether the differences are acceptable. If the result 

shows that the model simulation is different from the true data, 

changes should be made to the model. Making changes in the 

model has to be continued until designers make sure that the 

model is a good representation of the real system, and the 

difference between the simulation and true data is not significant. 
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Another tool to validate a model using true data is sensitivity 

analysis. In this technique, designers evaluate the confidence in 

a model based on the relationship between inputs and outputs of 

the model simulation. This requires studying the effect of each 

input on the output variation. The same input-output relationship 

is expected to occur in the real system (Saltelli, 2000; Wagner, 

1995; Triantaphyllou and Sánchez, 1997) 

Sensitivity analysis requires repeating the simulation many 

times; therefore, it can be expensive when the simulation takes a 

long time to run or the model has too many input parameters. 

Another limitation of sensitivity analysis is the assumption of the 

independent input parameters. Some sensitivity analysis 

techniques assume independency between model inputs; 

however, in designing complex engineered systems, designers 

have to pay extra attention to the model inputs, since they can be 

highly dependent. Dependent inputs shows greater variation in 

the model output compared to an independent parameter.  

Regression is a simple tool for sensitivity analysis. 

Regression coefficients are representation of the sensitivity of 

the response variable (output) to each one of the dependent 

variables (inputs) (Storlie et al., 2009; Hurvich and Tsai, 1989). 

The limitation of the regression method is that it assumes a linear 

relationship between the model output and the input parameters 

(variables). Also, it is assumed that there is only one output for 

the model. However, in designing complex engineered systems, 

there could be more than one output or a non-linear relationship 

between the input parameters and model output. When there is 

more than one output, sensitivity analysis can be performed for 

each output separately but, it is hard to interpret the result in a 

correct way. In such cases, variance-based sensitivity analysis is 

recommended. 

The variance-based, or global, sensitivity analysis SOBOL 

method is a sensitivity analysis method based on probabilistic 

framework. It breaks the variation of the model output into 

fractions, each fraction is assigned to one model input (Saltelli et 

al., 2010; Marzban, 2013; Mara and Tarantola, 2012). The local 

sensitivity is a method to complement the SOBOL analysis. In 

this technique, the fractions are produced by taking partial 

derivatives of the output regards to each input |
𝜕𝑌

𝜕𝑋𝑖
|. 

Little Data to Validate Model 
When there is little true data to validate a model, assigning 

a probability distribution is not reasonable. In this case, non-

parametric tests are better strategies to compare the data 

generated by model to the true data observed from real system 

or prototype or a valid model, because non-parametric tests are 

distribution-free, it means they are not based on probability 

distribution assumption for the data.  

If true data and simulated data are categorical, a chi-squared 

test can be used to validate the model (Mantel, 1963; Conover 

and Iman, 1981). The null hypothesis is that frequencies for the 

true data and the simulated data are equal. Schoenfeld (1980) 

illustrates that under the null hypothesis, the test statistic has 

approximately a chi-squared distribution with 𝑛 − 1 degrees of 

freedom. For 𝑛 categories, the test statistic is calculated by Eq. 

(3). 

𝑇𝑒𝑠𝑡 𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =  ∑
(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑖−𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑𝑖)2

𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑𝑖

𝑛
𝑖=1             (3) 

If true data and simulated data are continuous values, and 

non-categorical, the Kolmogorov–Smirnov test is a well-known 

technique to validate the model (Conover, 1972; Massey, 1951). 

The null hypothesis in a Kolmogorov-Smirnov test is simulation 

and observations are from the same distribution, the alternative 

is that they are not from the same distribution. If the test result is 

1, the data provides enough evidence to reject the null 

hypothesis; if the test result is 0, we fail to reject the null 

hypothesis. Rejecting the null hypothesis means the simulation 

and true data are not from the same distribution. In this case, the 

model is not adequate to represent the real system.  

In the early design stage, there is no information available 

from the real system’s behavior. The prototype of the system is 

not manufactured yet and historical data from the complete 

system does not exist for a new design. In this case, the methods 

based on statistical distribution assumptions are generally not 

applicable.   

The limitations and assumptions of model validation in early 

design stage are the main motivation for this paper. Specifically, 

we are interested in answering the question how we can make 

sure that the failure behavior simulation by the selected model 

in the early design stage is a good representation of the real 

system’s behavior. The main challenge to answer to this question 

is that there is no real system or prototype manufactured in the 

early design stage and there is no historical data available from 

the complete system. Therefore, model validation for the 

selected model simulation must be built upon data from some 

subsystems and expert knowledge as the only source of 

information available in the early design stage. In the following 

section, we propose methodologies to validate the fault behavior 

simulated by the selected functional model for the 

monopropellant propulsion system in the early design stage. 

No Data to Validate Model   
When there is no true data to validate a model, one strategy 

is to use expert knowledge to validate the model. The challenge 

is to quantify the expert knowledge in a meaningful way to be 

able to compare with the model output. When probability theory 

and distribution assumptions are not applicable, evidence theory 

is a good approach. Evidence theory is also called Dempster–

Shafer theory because Shafer (1992) developed the idea 

presented by Dempster. In evidence theory, the basic idea to 

quantify expert knowledge is using Basic Belief Assignment 

(BBA). 𝐵𝐵𝐴 can be described as the degree of trust in an element.  
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An example of using BBA is provided as follow. Assume in 

designing a complex engineered system, 𝑋 =
 {𝑥1, 𝑥2 , 𝑥3 , 𝑥4 , 𝑥5} where 𝑥1 to 𝑥5 are uncertain elements that 

we are interested in quantifying using expert knowledge. The 

elements are mutually exclusive of each other: 𝑥1 defines system 

behaves nominally, 𝑥2 to 𝑥4 define different degraded states of 

the system, and 𝑥5 is failure mode of the system. 𝐵𝐵𝐴 quantifies 

expert knowledge using a mapping function m. The number 

𝑚(𝐴) is in range zero to one and illustrates the portion of total 

expert’s belief in element 𝐴, when 𝐴 𝜖 𝑋 (Sentz and Ferson, 

2002; Zadeh, 1984). Bae et al. (2004) explained when there are 

two 𝐵𝐵𝐴, 𝑚1 and 𝑚2, provided by different evidence sources, 

e.g., different expert knowledge, Dempster’s equation can be 

utilized to get the combined 𝐵𝐵𝐴 presented in Eq. (4). 

𝑚𝐴 =  
∑ 𝑚1(𝑐𝑖)𝑚2(𝑐𝑗)𝑐𝑖∩𝑐𝑗=𝐴

1− ∑ 𝑚1(𝑐𝑖)𝑚2(𝑐𝑗)𝑐𝑖∩𝑐𝑗=∅
                            (4) 

where 𝐶𝑖  and 𝐶𝑗 are propositions from knowledge sources 𝑚1and 

𝑚2. In Eq. (4), ∑ 𝑚1(𝑐𝑖)𝑚2(𝑐𝑗)𝑐𝑖∩𝑐𝑗=∅  is the conflict among two 

independent sources of knowledge. Dempster’s rule resolves the 

conflict by normalization. It is more reasonable to present a 

range instead of a single number to quantify belief or trust or 

confidence of experts. In evidence theory, the range is expressed 

as [𝐵𝑒𝑙(𝐴), 𝑃𝑙(𝐴)]. Equations (5) and (6) show how to obtain the 

range. 

𝐵𝑒𝑙(𝐴) = ∑ 𝑚(𝑐)𝑐⊂ 𝐴                                   (5) 

𝑃𝑙(𝐴) = ∑ 𝑚(𝑐)𝑐∩𝐴≠∅                                   (6) 

where 𝐵𝑒𝑙(𝐴) is the total degree of belief. It is the summation of 

𝐵𝐵𝐴𝑠 for sets including complete proposition 𝐴.  

As defined by Bae et al. (2004), plausibility for 𝐴, 𝑃𝑙(𝐴), is 

the summation of 𝐵𝐵𝐴𝑠 of propositions that do not have empty 

intersections with proposition 𝐴. In fact, 𝑃𝑙(𝐴) is the total BBAs 

that agree with proposition 𝐴 totally or partially. Evidence theory 

uses the described equations to quantify the degree of belief or 

trust or confidence of experts to a model output and help decide 

about the validation of the model.  

Failure Mode and Effect Analysis (FMEA) is another 

strategy to bring the ideas of experts take into account. FMEA 

describes failure of the system as well as causes and effects of 

the failures. The results of FMEA are used to consider design 

changes that may be necessary to reduce risk. It is assumed that 

experts are able to judge the models based on the outputs 

(Stamatis, 2003; Van Leeuwen, 2009; Goddard, 1993). 

 

VALIDATION OF FAILURE SIMULATION IN EARLY 
DESIGN PHASE FOR A MONOPREPELLANT 
PROPULSION SYSTEM 

In our previous paper (Keshavarzi et al., 2017), we proposed 

a design method in early design phase using functional models. 

In the proposed method, a population of functional models is 

generated and the potential failure scenarios are simulated; 

finally, applying a cost-risk model, the most resilient design is 

selected. In this paper, we are interested in validating the result 

of simulation created by a selected model in the early design 

phase. In case of monopropellant propulsion design, the selected 

model is a functional model. A functional model is a structured 

representation of the functions required to meet system 

requirements (Conover, 1972). The purpose of a functional 

model is to describe the system behavior and determine 

vulnerable parts of the design, resulting in potential system 

improvement. Figure 1. illustrates the selected functional model 

for the monopropellant propulsion system. In the selected 

design, the propellant plays the role of cooling material and the 

extra heat produced from propulsion helps to expand inert gas 

and preheat propellant for the better propulsion. 
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Figure 1.  Selected functional model in early design stage for 

monopropellant propulsion system 

 

The failure behavior simulation result using the selected 

function model is presented in Fig. 2. The final behavior of the 

system can be classified to nominal (the spacecraft complete the 

mission), too much thrust (the spacecraft passes the target orbit), 

too little thrust (the spacecraft doesn’t reach to the target orbit), 

no thrust (the spacecraft does not move), and catastrophic 

behavior like explosion or crash to the space debris.   

 

Figure 2. Failure simulation result for a monopropellant propulsion 

system 

The question is how to validate the fault behavior simulation 

generated by the selected model. To answer this question, we 

apply ideas from model validation methods using expert 

knowledge, historical data from sub-systems and sensitivity 

analysis to develop three practical methodologies to guide the 

designers to validate the model developed in the early design 

stage. To apply expert knowledge to validate the model in early 

design stage, we propose a FMEA based method to quantify 

expert knowledge and validate the model selected in early 

design. Existing validation methods based on historical data are 

not directly applicable, since it is assumed that historical data of 

real system behavior are not available; therefore, we made 

modifications to the idea to enable the designers to validate the 

fault behavior generated by the selected functional model in the 

early design stage utilizing the observed data from one or more 

subsystem/s operating in other systems. For this method, we use 

a chi-squared test. The sensitivity analysis method is based on 

the partial derivatives of the cost model and it guides designers 

to focus on sensitive parts of the system, specifically in later 

design stages. These three methodologies are described in detail 

in the following subsections. 

Apply Expert Knowledge to Validate Functional Model  
One approach to validate a model is to have experts with 

deep knowledge to confirm the simulation results and decide 

about validity of the model. This strategy is commonly used 

when data (observations) of real system’s behavior is not 

available.  

In this method, experts should be involved in the design 

process to be able to provide the designers effective technical 

advice and validate the model through analyzing the failure 

1%
4%

1%

4%

90%

No Thrust

Too much Thrust

Little Thrust

Loss the system

Mission
Accomplished
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simulation outputs. For example, in the monopropellant 

propulsion system design, experts from NASA Ames were 

involved in the design progress. Based on NASA Ames expert 

knowledge, a FMEA was conducted to validate the result from 

fault behavior simulated by functional model. Failure modes and 

effects analysis (FMEA) is a step-by-step approach for 

identifying all possible failures in a design of the system.  

Failures are defined as any errors that affect the completion 

of the mission for the monopropellant propulsion system. The 

effects analysis part of FMEA addresses the cause and 

consequences of each failure.  Failures are sorted considering the 

severity of the consequences of the failures and the chance of 

occurrence. FMEA is not a one-time analysis: it has to be done 

in the early design phase, as well as in further design steps and 

in the lifecycle of the system. 

The main goal of the FMEA in design process and operation 

control is to provide improvement strategies to reduce the 

failures, particularly the ones with higher priority rank (Teng, 

and Ho, 1996; Vesely et al., 1981). In this paper, we use a FMEA 

to quantify expert knowledge about fault behavior of the system 

in the early design stage when there is no information available 

about complete system’s behavior. The setup to quantify the 

expert knowledge is exploring their ideas about possible failure 

scenarios and probabilities of failure. The schematic developed 

by Tang et al., (2007) shown in Fig. 3. was applied to develop 

the FMEA table.  

 

Figure 3. A monopropellant propulsion system schematic (Tang et al., 

2007a). 

The failures that affect system mission accomplished are 

divided into four classes, and in each class the severity and the 

occurrence have been decided by NASA Ames experts. Table 2. 

represents a developed FMEA for the monopropellant 

propulsion system based on NASA Ames documents and asking 

their experts about the occurrence of each failure mode 

(probability) and severity. The severity is a number from 1 to 10, 

where 10 is the highest and 1 is the lowest. The occurrence is a 

percentage which shows the number of failure occurrences every 

100 missions.  

Table 2. FMEA for monopropellant propulsion system 

Potential 

Failure 

Mode 

Potential 

Effect of 

Failure 

Class 

Occur 

in 

hundred 

Severity 

Valve IV1 

stuck closed 

Failure of the 

system to 
provide thrust 

when 

commanded 

1 

3 9 

Valve IV2 

stuck closed 

Failure of the 

system to 

provide thrust 
when 

commanded 

1 

Valve IV3 

stuck closed 

Failure of the 

system to 
provide thrust 

when 

commanded 

1 

Leakage in 
IV1 

Failure of the 
system to 

provide thrust 

when 
commanded 

1 

Regulator 

failure 

Failure of the 

system to 

provide thrust 
when 

commanded 

1 

Low 
propellant 

level 

Failure of the 

system to 
provide thrust 

when 

commanded 

1 

Valve IV3 is 

stuck open 

Continued 
firing after the 

system has 

been 
commanded 

off 

2 

2 9 

Timer Relay 

K6 fails to 
disengage 

Continued 

firing after the 
system has 

been 

commanded 
off 

2 

Switch S3 
failure 

Continued 

firing after the 

system has 
been 

commanded 

off 

2 

Pressure 
sensor on 

RG fails 

Continued 
firing after the 

system has 

been 
commanded 

off 

2 
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Pressure 
Sensor TK 

failures 

Continued 

firing after the 

system has 

been 
commanded 

off 

2 

Pressure 

Sensor PT 
failures 

Continued 

firing after the 
system has 

been 

commanded 
off 

2 

Temperature 

Sensor TK 

failures 

Continued 

firing after the 

system has 
been 

commanded 

off 

2 

Temperature 
Sensor PT 

failures 

Continued 
firing after the 

system has 

been 
commanded 

off 

2 

Abnormal 
inert gas 

path 

pressure 

Inadequate gas 

pressure  
3 

4 8 

Abnormal 
propellant 

gas path 

pressure 

Inadequate gas 

pressure  
3 

Pressure 
regulator 

failure 

Inadequate gas 

pressure  
3 

Low 

propellant 
due to 

leakage 

Inadequate gas 
pressure  

3 

Low inert 

gas due to 
leakage 

Inadequate gas 

pressure  
3 

Catastrophic 
Failure  

 Explosion or 

lose control of 

the system 

4 0.1 10 

 

NASA Ames experts concluded that regulator and isolation 

valve number 4 plays a significant role in mission 

accomplishment, and they decided to improve the design to that 

shown in Fig. 4., with a redundant regulator and isolated valve. 

The system can switch the gas path to the redundant (IV4-RG2) 

path when a fault in either IV1 or RG occurs (Tang et al., 2007a, 

2007b). 

 

Figure 4. Parallel redundant regulator and isolation valve (Tang et 

al., 2007a). 

The result obtained from functional model failure simulation is 

compared to the FMEA. As shown in Tab. 2., effects of failures 

can be classified into 3 categories: 1) failure of the system to 

provide thrust when commanded, 2) continued firing after the 

system has been commanded off, and 3) inadequate gas pressure. 

These groups are the same as the end states or final behaviors 

that we defined for the functional model’s failure simulation. 

The classes of the failures, occurrence, and severity from the 

FMEA table matches with our developed end states and 

probabilities obtained from classification of failure scenarios. As 

shown in Tab. 3., for each category of effects from expert 

knowledge, the summation of the occurrence provides the 

probability of that type of failure.  

Table 3. Proportions of each category for expert knowledge and 

simulation 

Expert Knowledge  Simulation 

Failure 

Effect 

Proportions 

(Percentage) 

Undesired 

End States 

Proportions 

(Proportions) 

Failure of 

the system to 

provide 

thrust when 

commanded 

3% No Thrust  1% 

Continued 

firing after 

the system 

has been 

2% Too much 
Thrust  

4% 
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commanded 

off 

Inadequate 

gas pressure 

4% Little Thrust  1% 

Catastrophic 

Failure  

0.1% Loss the 

system  

4% 

No Failures  90.9% Mission 
Accomplished  

90% 

Table 3. provides the proportion of each category 

occurrence based on the simulation and expert knowledge. We 

are interested to know if there is any significant difference 

between the simulated proportions and the proportions claimed 

by experts for different categories. Using a chi-squared test to 

compare the probabilities quantified from expert knowledge and 

probabilities obtained from simulation resulted in a p-value of 

0.1266 which shows statistically there is no evidence to reject 

the null hypothesis, both sets of proportions are similar. Also, 

our definition of undesired final behavior and the probability of 

having each undesired end state obtained from failure simulation 

using functional model were discussed and approved by a NASA 

Ames expert on September 28, 2016 at Oregon State University.  

Apply Subsystem Data to Validate Functional Model 
This validation phase focuses on utilizing available 

observed data from some subsystems to validate the simulation 

results when there is no data available from the entire system 

behavior.   

There are statistical tests to specify whether the difference 

between observation and simulation is meaningful or not. There 

are parametric methods that require a distribution assumption. 

When observed and simulated data are discrete or categorical, 

and no distribution assumption is made, non-parametric methods 

are more precise and robust. What we obtain from a selected 

functional model simulation in the early design stage is the 

failure scenarios, which can be divided into distinct categories 

based on the final behavior of the system.  

In the monopropellant propulsion system, there is no data 

from the real system available to validate the functional model 

simulation, and manufacturing a prototype is not technically or 

financially feasible in the early design phase. However, there are 

subsystems that are built into other engineered systems. A 

NASA Ames expert provided us the information from three 

years of operation of an outer space system with a similar 

regulating gas subsystem. In each year, the system completes 

three missions on average. In three years, only one time the 

regulate gas function had a malfunction and produced lower 

pressure than what was expected; in other observations, there 

were no fault behaviors related to the regulating gas. The modes 

in the functional model for regulating gas are:  

 Nominal Pressured Regulating  

 Low Pressure Regulating  

 High Pressure Regulating  

 No Pressure Regulating  

 No Gas to Regulate  

For the aim of this study, we extract the scenarios with “No 

Gas to Regulate” because this mode is caused by failure of the 

previous functions. Figures 4. and 5. show the histograms for the 

classified scenarios caused by the subsystem regulate gas failure, 

for the simulated functional model and the real system. The null 

hypothesis is the densities of the two histograms are bin by bin 

equal, against the alternative that they are different. 

`  

Figure 5. Simulation scenarios for selected monopropellant 

design  

 

Figure 6. Observed scenarios for gas regulator in spacecraft 

engine  

Table 4. Presents that fault behavior produced by the 

functional model is categorical. In other words, the simulation 
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only produces discrete outcomes belonging to one category of 

final behavior and the observations are also categorical. 

Therefore, a chi-squared test is applied to compare the observed 

and simulated behavior.  

Table 4. Observed and simulated proportions for regulating 

gas 

End State  Simulation  Observations  

Nominal Regulating 1633 8 

Low Pressure Regulating  73 1 

High Pressure Regulating  18 0 

No Pressure  16 0 

The chi-squared critical value at 95% confidence interval for 3 

degrees of freedom is 1.2115. The P-value is 0.7503, which 

shows the observed proportions are not significantly different 

from the expected proportions. 

Local Sensitivity Analysis of Selected Functional 
Model 

Sensitivity analysis is an unavoidable part of the validation 

process (Conover and Iman, 1981). Designers apply the 

sensitivity analysis to study the effect of each model’s input on 

the model’s output. In this section, a local sensitivity analysis 

methodology is proposed to find sensitive functions in the 

selected model for further study in the design process.  

This approach is based on the mathematical derivative of the 

cost-risk function with respect to cost of each faulty behavior. 

The cost-risk function is formulated based on the operation, 

design, mitigation, failure cost, and probability of failure. 

Changes in the actual functions in selected functional models 

only affect the probability of the system fault behavior and 

consequential cost of failure. Partial derivatives of the cost 

function relative to 𝐶𝐼 , 𝐶𝑂 and 𝐶𝑀 are constant values, and they 

do not provide insight about how the function influences the cost 

function. Equation (7) shows the derivative of the cost function 

to the cost of failure, which reflects the probability of having 

faulty behavior 𝑖. 

𝑓 = ∑ 𝐶𝑅,𝑖𝑃𝑅,𝑖
𝑁
𝑖=1                            (7) 

𝜕𝑓

𝜕𝐶𝑅,1

=  𝑃𝑅,1  ,
𝜕𝑓

𝜕𝐶𝑅,2

=  𝑃𝑅,2   , … . ,   
𝜕𝑓

𝜕𝐶𝑅,𝑁

=  𝑃𝑅,𝑁                                

To quantify each partial derivative in Eq. (7), the 

classification of failure scenarios based on the final behavior of 

the system is used. The total number of failure scenarios that 

ended with a specific behavior divided by the total number of 

scenarios generated by the model quantifies each of the partial 

derivatives. For instance, the classification illustrated in Fig. 2, 

reflects the probability of occurrence of each final behavior, and 

can be used to quantify the partial derivatives of the cost-risk 

model. To identify the probability of failure of sensitive 

functions, we develop a search tool in Python to specify the top 

sensitive functions. The tool searches for the top repeated 

functions among all the unique failure scenarios. The pseudo 

code for the search tool to find the sensitive functions is 

presented as follow: 

Read the file of unique scenarios  

Put the file into a list  

Capitalize all the words in the list  

Create an empty dictionary  

for each line in the list  

 remove all the white space  

 for each word in the line  

  if word exists in the dictionary  

   add 1 to the number of counts for this 

word; 

  else  

   add the word to the dictionary  

end (for) 

end (for) 

For the selected functional model, the developed search tool 

determines that “Expanded Gas”, and “Excess Gas” are the most 

frequent words in the failure simulation results  

 “Heating Gas” causes expanded gas and excess gas issues 

which is the main root for undesired final behavior of the system.  

In the selected design, the extra heat produced from thrust is 

saved to apply in the process of heating gas. Next, in the 

preliminary and detailed design phases, designers should 

investigate the strategies to enable the design to deal with the 

heat issue. Figure 7. shows the parts of selected functional model 

(red arrows) that mainly cause the undesired final behavior. 



11                                                            Copyright © 2018 by ASME 

In
e

rt
 G

a
s 

P
ro

p
e

ll
a

n
t

H
2

O
2 C
a

ta
ly

st

Im
p

o
rt

 H
e

a
t

Im
p

o
rt

 G
a

s
C

o
n

ta
in

 I
n

e
rt

 
G

a
s

C
o

n
d

u
c
t 

E
x
p

a
n

d
e

d
 G

a
s

S
e

n
se

 G
a
s
 

R
a
te

In
e

rt
 G

a
s

Expanded
 Gas

E
x
p

a
n

d
e

d
 G

a
s

E
x
p

a
n

d
e

d
 G

a
s

E
x
p

o
rt

 E
x
c
e

ss
 

G
a

s

C
o

n
d

u
c
t 

A
d

ju
st

e
d

R
a
te

 G
a

s 

Im
p

o
rt

 
P

ro
p

e
ll
a

n
t

C
o

n
ta

in
 

P
ro

p
e

ll
a

n
t

A
d

ju
s
te

d
 

R
a
te

 G
a
s

P
ro

p
e

ll
a

n
t

S
e

n
se

 P
ro

p
e

ll
a
n

t 
P

re
s
su

re
C

o
n

tr
o

l 
P

ro
p

e
ll
a

n
t 

P
re

ss
u

re

C
o

n
d

u
c
t 

A
d

ju
st

e
d

R
a
te

 P
ro

p
e

ll
a

n
t 

to
 C

a
ta

ly
st

Im
p

o
rt

 C
a
ta

ly
s
t

P
a

ss
 P

ro
p

e
ll
a

n
t 

O
v
e

r 
C

a
ta

ly
st

E
x
p

o
rt

 
B

y
p

ro
d

u
c
ts

E
x
p

o
rt

 E
x
c
e

ss
 

G
a

s 
2

 

P
ro

p
e

ll
a

n
tR

e
g

u
la

te
d

 G
a
s

E
x
c
e

s
s 

G
a

s2
 

C
a

ta
ly

s
tH
e

a
t

P
ro

c
e

ss
 S

ig
n

a
l

D
e

si
re

d
 G

a
s 

R
a
te

R
e

a
l 

G
a
s
R

a
te

D
e

si
re

d
 G

a
s 

P
re

ss
u

re

E
x
c
e

s
s 

G
a

s

C
o

n
tr

o
l 
G

a
s 

R
a
te

A
d

ju
s
te

d
 

R
a
te

 G
a
s

S
e

n
se

 G
a
s
 

P
re

ss
u

re
R

e
g
u

la
te

 G
a

s 
P

re
ss

u
re

A
d

ju
s
te

d
 

R
a
te

 G
a
s

N
e

e
d

e
d

 
T

e
m

p
e

ra
tu

re

R
e

a
l 

G
a
s
 P

re
ss

u
re

R
e
g

u
la

te
d

 G
a
s

C
o

n
d

u
c
t 

R
e

g
u

la
te

d
 G

a
s 

to
 

P
ro

p
e

ll
a

n
t 

P
ro

c
e

ss
 S

ig
n

a
l

D
e

si
re

d
 P

ro
p

e
ll
a

n
t

P
re

ss
u

re

R
e

a
l 

P
ro

p
e

ll
a
n

t
P

re
ss

u
re C

o
n

d
u

c
t 

P
ro

p
e

ll
a

n
t 

 

R
e
g

u
la

te
d

 G
a
s

Regulated Gas

S
e

n
se

 P
ro

p
e

ll
a
n

t 
R

a
te

 
P

ro
p

e
ll
a

n
t

P
ro

c
e

ss
 S

ig
n

a
l

R
e

a
l 

P
ro

p
e

ll
a
n

t 
R

a
te

C
o

n
tr

o
l 
 

P
ro

p
e

ll
a

n
t 

R
a
te

 
E

x
p

o
rt

 E
x
c
e

ss
  

P
ro

p
e

ll
a

n
t

P
ro

p
e

ll
a

n
t

E
x
c
e

s
s 

P
r
o

p
e

ll
a
n

t

D
e

si
re

d
 P

ro
p

e
ll
a

n
t 

R
a

te
A

d
ju

s
te

d
 R

a
te

 P
ro

p
e

ll
a
n

t

A
d

ju
s
te

d
 R

a
te

 P
ro

p
e

ll
a
n

t

T
h

ru
st

 C
o

m
m

a
n

d
 

E
x
p

o
rt

 H
e

a
t

Heat

B
y
p

ro
d

u
c
ts

T
h

ru
st

C
o

m
p

le
te

 M
is

s
io

n
 

H
e

a
t

Heat

Heat  

Figure 7.  Sensitive parts in the monopropellant functional 

model 

The results of the local sensitivity analysis should be 

consulted throughout the design process. Designers should pay 

more attention to sensitive functions, especially in the phase 

when mapping the functional model to a component model. The 

model validation in this way is viewed as an evolutionary 

process: as we go through the design process, more information 

is available which can be applied for further validation and 

implement updates if needed. Table 5. provides a summary of 

proposed methods in this section to validate the results of the 

selected model in early design stage. 

Table 5. Methods to validate model selected in the early design stage 

I

D 

Functional Model Validation 

Method 

Tools 

1 Apply expert ideas to validate 

functional model  

Failure Probabilities, 

FMEA 

2 Apply observed  data for a subsystem  

to validate functional model 

Failure Probabilities, 

Chi-Squared Test 

3 Apply local sensitivity Analysis to 

find the most sensitive functions 

Cost-Risk Model 

Derivatives, 

Sensitive Functions 

Search Tool 

 

CONCLUSION 

The main contribution of this paper is to provide practical 

methodologies to validate the simulation generated by the model 

selected in the early design phase. We reviewed the concept of 

model validation and its value in complex engineered systems. 

We classified the existing validation methods based on the 

information available from the real system’s behavior in the 

early design phase and for each class, we proposed the tools and 

techniques. We discussed that some existing methods are not 

applicable directly to validate model developed in early design 

stage since there is no or inadequate information from the real 

system behavior. We showed that there is a lack of research on 

methods to validate a model when there is no or inadequate 

observed data. We proposed strategies to validate the fault 

behavior generated by a functional model in the early design 

stage. In the first proposed method, we showed how to quantify 

the expert’s knowledge using a FMEA technique to decide about 

the validation of the failure probabilities obtained from the 

simulated failure scenarios. The second proposed approach 

applies available observed data related to a subsystem of the 

model, then the non-parametric chi-squared test is utilized to 

provide evidence of meaningful differences between the model 

and observation. The third strategy is based on the local 

sensitivity analysis. In this method we applied our developed 

tool to find the most sensitive functions and find the variation in 

the cost model caused by changes in the sensitive functions. 

Functions with a high effect on the cost model should receive 

close attention in further steps of design process, especially when 
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mapping the functional model to a component model. We 

successfully applied the proposed strategies to validate the result 

of model simulation in early design stage for a monopropellant 

propulsion system. 
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